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Images as Functions

e Analog = Continuously-Defined Image Representation

— Images are functions of two real variables
e Vector-Space Formulation

— All images are “points” in a vector space
e Vector Space of Finite-Energy Images

— Mathematical framework for image representations
e Two-Dimensional Systems

e Linear, Shift-Invariant (LSI) Systems

— Fundamental tool to “process’ images



Analog Image Representation

Analog image

2D light intensity function: f(x,y)
e (x,y) are the spatial coordinates

e The output f(z,y) is the brightness (or grayscale level) at (z, )
1z, y)

origin x

f:]RQ%R




Vector-Space Formulation

What is a vector space?

Definition: A vector space is a set ‘H where, for every f,g,h € 'H
and o, 8 € R, we have that

e Associativity: f+(g+h)=(f+9)+h

e Commutativity: f+g=9g+ f

e ldentity: There exists 0 € H such that f +0=f

e Inverse: There exists —f € H such that f + (—f) =0

e Compatibility With Scalar Multiplication: a(8f) = (af8)f
e Multiplication With Scalar Identity 1f = f for1 e R

e Distributivity I: a(f + g) = af + ag

e Distributivity Il: (a+ 8)f =af + 6f



Vector Space of Images

Do images (functions that map R? — R) form a vector space?

e Associativity: f+(g+h)=(f+9)+h

e Commutativity: f+g=¢g+ f zero(z,y) = 0 for all (z,y) € R?
e ldentity: There exists 0 € H such that f +0=f

e Inverse: There exists —f € H such that f+ (—f) =0

e Compatibility With Scalar Multiplication: a(8f) = (af8)f

e Multiplication With Scalar Identity 1f = f for 1 € R

e Distributivity I: o(f + g) = af + ag

e Distributivity Il: (a+ 08)f =af + 6f

Yes, images form a vector space



Vector Space of Finite-Energy Images

Definition: The energy of an image f : R* — R is

/ / (z,y)|* dedy

Definition: The vector space of finite-energy images is denoted L?(IR?)

f € L*(R?) if and only if its energy is < oo

W= [~ [ s panay Fionorm of f o energy of "
L= (z,y)|” dedy

measures the “size” of f

Recall: Given a vector & €¢ RY

N
|l = |znl?
n—=1



Inner Product of Finite-Energy Images

Recall: Given vectors x,y € RY, their inner product is

N

<.’B, y> — CBTy — Z Lnln

n=1

Definition: The inner product of f,g € L*(R?) is

conjugate if complex valued

(f,9) :/_o; /_O; f(fay)ﬁ(mdy

Observation: The norm is induced by the inner product

|£IIz2 = (/. )

L*(R*) = {f(z,y) : [Ifllz> = ([, f) < oo}



Examples of Finite-Energy Images

e 2D Gaussian
(2.1) 1 2 4 y?
£z — — X —
g\r,y o p 9

g € L*(R?)

o Finite support 2 C R? and bounded images
fz,y) =0, forall (x,y) Q  Exercise: Show that f € L2(R?)
[f(z,y)l < C, forall (z,y) € R?

= [ [ 15w dody

_ / f (@) dedy
Q)

< // C? dzdy
Q

= C?vol(Q) < oo

A




Plane Waves

e Sinusoidal gratings

s(z,y) = A cos(w1z + way + @)

‘ Wave vector

\ \\\ W = (wla wZ)

Does s have finite energy?

2

2 2
VWi + ws

'~ Period: T =

No, s & L*(R?)

However, s(z,y) - w(z,y) € L*(R?)  Example:

w(x,y) is a finite-support and
bounded window function

|

w(z,y) =1,
w(z,y) =0,

(x,y) € [0,1]°
else
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Two-Dimensional Systems

e Mapping from one image to another

f— H — g

H: L2(R?) — L2(R?)
g =H{f}

e [he most important systems are linear systems

Ji—

Jo——

H

H

Va, 8 € R

afi + Bfo—— H |— ag1 + B9

— g

H{afi + Bf2} = aH{f1} + BH{ f2}
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Linearity Practice

e (Partial) derivative operators are linear or nonlinear? Linear

f(z,y) of(z,y)
Ox oy

Hl{f} — a and Hz{f} —

e The following operator is linear or nonlinear? Linear
Ha{f}(z,y) = f(a* + 2+ 1,y — /y)

o Geometric operators are linear or nonlinear? Linear

Huy{ f}(z,y) = f(G1(z,y), G2(7,y))

where G1(x,y) and Ga(x,y) are arbitrary (nonlinear) transformations.

e The thresholding operator is linear or nonlinear? Nonlinear

r

L, |f(z,y)| > To
0, else

H5{f}(£I}, y) = 9




Linear, Shift-Invariant Systems (LSl)

Definition: A linear system H is shift-invariant if and only if shifted

inputs correspond to shifted outputs.

f(mvy) -

f(x—fo,y—y())_’

H

V(zo,y0) € R?

- g(x_x()vy_y())

Hif(z =0,y —yo); = H1f}(z — 20,y — o)

o LS| systems model most physical imaging devices  impulse response”

LS| = realized by convolution: H{f}(z,y) = (h* f)(z,y)

13



2D Fourier Transform

e Definition

e Separability

e Properties

e Dirac impulse

e Dirac related Fourier transforms

e Application: finding the orientation

e Importance of the phase
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2D Fourier Transform: Definition

e 2D Fourier transform: f(wl,wg) :/ / f(z, y)e  erztwzy) qa qy

e Inverse Fourier transform: f(x,y) wg)eJ(wlim?y) dwq dws

Vector notation:

Spatial variables: x = (z,y) € R? A

Frequency variables: w = (wy,ws) € R?

wle = wix + Woly 1
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Plancherel, Parseval, and Finite-Energy

e Fourier analysis on L?(IR?) (Plancherel)

f e L?*R?) ifandonlyif fe L*R?)

e Parseval’s formula for f, g € L*(IR?)

1

(f,9) = PIE (f,d)

e Plancherel’s theorem for f € L?(IR?)

1 "
17152 = el 1

Fourier analysis is well-matched

What does this mean? . .
to finite-energy functions
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Separability
o Separability of complex exponential: e~ i{w1etwzy) — o= jwize—jway

2D Fourier transform = sequence of two 1D Fourier transforms

Fourier in x then y or Fourier in y then x

Exercise: Show that this is true.

1D Fourier transform in x: / flx,y)e % dz = £, (w1)

1D Fourier transform in y: / fy (w1)e™392Y dy

/ / fx,y)e 11" dx e 992 dy
[ | t@yere e dady = flon,w)

2D Fourier transform inherits most properties from 1D Fourier transform!
17



Separability (cont’d)

Definition: f(x,y) is called separable if f(z,y) = fi(z)fa(y) for
some f1(z) and fa(y).

A A

Exercise: For separable functions, show that f(wi,ws) = fi(w1)f2(ws).

What is an example of a separable function?

1, if (z,y) €[0,1) “box" or “rect”
0, else function

fi(z) = {1’ trel0l F(z,y) = fu(@)fi(y)

0, else
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Separability (cont’d)

e 2D Gaussian

:1:2+y2
g(xay) — eXp | — 9

2
— N N /2€_y2/2

— g(wi,ws) = f(wl)f(wz) where f(x) = e—T /2

| F

flw) = /_OO flx)e T dx = \/2re=w /2

2 7
> — \/ Imewi/2. V Imew2/2 — op exp (—wl —;wz

Fourier transform of a Gaussian is a Gaussian (just like 1D)

)
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Fourier Properties

o Duality: f(®) <& (2m)2 f(—w)
o Symmetry: f(z) real & f*(w) = f(-w)
o Energy-Preservation: 1713, = 2m) 215113
o Shift: flx — x0) <2 e~ 3 @0 ()
e Modulation: eI f(z) <55 flw — wp)
o Scaling: flx/a) <2 |a)? flaw)
o Affine Transformation: F(AZ) <25 [det A|~LF (A1) Tw)
o Differentiation: a"';]; f") < (jor)" f(w)

TIE) 2, (o)

. o0 o0 . am‘H”L r
e Moments: pe' = / / z™y" f(x,y) dedy = jmn awmgiu;)
—00 J —00 1 2
wlzo,wzzo

In particular, /OO /OO f(z)dx = f(0) = £(0,0)

— OO
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Dirac Impulse

e Recall the 1D Dirac impulse 6(x): (f,0) = /_OO f(x)d(x)dx = f(0)

e Properties:

Normalized integral: / O(x)dx =1
Fourier transform: d(z) 251
Convolution: (g*9)(x) = / O(u)g(x —u)du = g(x)

Exercise: Prove these three properties using the definition.

Normalized integral: f(x) =1

Fourier transform: f(z) = e¥®

Convolution: f(u) = g(xz — u)
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Explicit Construction of the Dirac Impulse

0

e Consider any window function ¢(z) such that / p(x)der =1

>~ 1
e Observe that/

a—0 8

e )(z) = lim (&gp (E

_¢(
ol

)

X

84

— OO

“Integral-preserving

dr =1 0 S
) dilation /contraction

e.g., ¢ is a Gaussian, rectangle, triangle, etc.

‘ 2,
(4an)—1/2e—x .’(4(1)

0.9

0.8+

0.7f

0.6

0.5+

0.4

0.3

0.2+

0.1+
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2D Dirac Impulse

e A reasonable definition: (f,d) = /_OO /_OO flz,y)d(x,y)dx = f(0,0)

What could give us this?
6(x,y) = 6(x)d(y) Jdi11=1 The Dirac impulse is separable!

Exercise: Prove that this is the 2D Dirac impulse.

e Properties:

— Normalized integral: / §(x)dx =1 These properti.es are dedU(.Zed
R? from the 1D Dirac properties.

— Fourier transform: 6(x) 1
— Multiplication: f(x)d(x — xg) = f(xg)d(x — x0)
= Sampling: (f(x),0(x —x0)) = [ [f(x)d(x —w0)dx = f(a0)

RQ

— Convolution: (f x6)(x) = f(x)
— Scaling: 6(x/a) = |a]?6(x)
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Dirac-Related Fourier Transforms

e Constant

o0
. . F .
One-dimensional: 1 M/ e YT dx =777
— OO

A

= lim e 1T dx = 27 §(w)
A— o0 A

Two-dimensional: 1 <2 (27)26(w) = (27)26 (w1, w2)

e Dirac line (or “ideal” line)

flz,y

Y

“infinite-amplitude line”

"X

F A A

(or by duality)

) =0(z) - 1= fi(z)f2(y) < > fwi,wz) = fi(wn) f2(wz) = 1- 276 (wo)

What does this mean?
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Example

Spatial Domain Fourier Domain
W2

A

f(w17w2)

What are these two sets of lines?
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More-Realistic Line Model

e Rectangular shape

A
f(x,y) =rect(x/a)rect(y/A) < A lalsinc (C;Wl) |A\Sinc< 2w2
T
a
Reminder:
1, ifae —-1/2,1/2] | F | , (w) sin(w/2)
tz) = < S 4 sinc [ — ) =

rect(x) 0. else = o




